ACYCLIC RESOLUTIONS FOR ARBITRARY GROUPS

BY

MICHAEL LEVIN

Department of Mathematics, Ben Gurion University of the Negev P.O.B. 653, Be'er Sheva 84105, Israel e-mail: mlevine@math.bgu.ac.il

ABSTRACT

We prove that for every abelian group G and every compactum X with $\dim_G X \leq n \geq 2$ there is a G-acyclic resolution $r: Z \longrightarrow X$ from a compactum Z with $\dim_G Z \leq n$ and $\dim Z \leq n+1$ onto X.

1. Introduction

All spaces are assumed to be separable metrizable. A compactum is a metrizable compact space.

Let G be an abelian group. A space X has the cohomological dimension $\dim_G X \leq n$ if $\check{H}^{n+1}(X,A;G) = 0$ for every closed subset A of X. The case $G = \mathbb{Z}$ is an important special case of cohomological dimension. It was known long ago that $\dim X = \dim_{\mathbb{Z}} X$ if X is finite dimensional. Solving an outstanding problem in cohomological dimension theory Dranishnikov constructed in 1987 an infinite dimensional compactum of $\dim_{\mathbb{Z}} = 3$. A few years earlier a deep relation between $\dim_{\mathbb{Z}}$ and dim was established by the Edwards cell-like resolution theorem [4, 9] saying that a compactum of $\dim_{\mathbb{Z}} \leq n$ can be obtained as the image of a cell-like map defined on a compactum of $\dim_{\mathbb{Z}} \leq n$. A compactum X is cell-like if any map $f \colon X \longrightarrow K$ from X to a CW-complex K is null homotopic. A map is cell-like if its fibers are cell-like. The reduced Čech cohomology groups of a cell-like compactum are trivial with respect to any group G.

Acyclic resolutions originated in the Edwards cell-like resolution. A compactum X is G-acyclic if $\check{H}^*(X;G) = 0$ and a map is G-acyclic if its fibers are

G-acyclic. Thus a cell-like map is G-acyclic with respect to any abelian group G. By the Vietoris–Begle theorem a G-acyclic map cannot raise the cohomological dimension \dim_G . Dranishnikov proved the following important

THEOREM 1.1 ([2, 3]): Let X be a compactum with $\dim_{\mathbb{Q}} X \leq n$, $n \geq 2$. Then there are a compactum Z with $\dim_{\mathbb{Q}} Z \leq n$ and $\dim Z \leq n+1$ and a \mathbb{Q} -acyclic map $r: Z \longrightarrow X$ from Z onto X.

It has been widely conjectured that Theorem 1.1 holds for any abelian group G. Substantial progress in solving this conjecture was made by Koyama and Yokoi [6] who proved it for a large class of groups including \mathbb{Q} and very recently by Rubin and Schapiro [8] who settled the case $G = \mathbb{Z}_{p^{\infty}}$.

The purpose of this note is to finally answer this conjecture affirmatively by proving

THEOREM 1.2: Let G be an abelian group and let X be a compactum with $\dim_G X \leq n$, $n \geq 2$. Then there are a compactum Z with $\dim_G Z \leq n$ and $\dim Z \leq n+1$ and a G-acyclic map $r: Z \longrightarrow X$ from Z onto X.

It is known that the dimension n+1 of Z in Theorem 1.2 is best possible [6]. However, it is unknown if the dimension of Z in Theorem 1.1 can be reduced to n (see [5] for related results). In this connection let us also mention the following interesting result of Dranishnikov.

THEOREM 1.3 ([1]): Let X be a compactum with $\dim_{\mathbb{Z}_p} X \leq n$. Then there are a compactum Z with $\dim Z \leq n$ and a \mathbb{Z}_p -acyclic map $r: Z \longrightarrow X$ from Z onto X.

Our proof of Theorem 1.2 essentially uses Dranishnikov's idea of constructing a Q-acyclic resolution presented in [3] and involves some methods of [7]. The proof is self-contained and does not rely on previous results concerning acyclic resolutions. The paper [3] is an excellent source of basic information on cohomological dimension theory.

2. Preliminaries

All groups below are abelian and functions between groups are homomorphisms. \mathcal{P} stands for the set of primes. For a non-empty subset \mathcal{A} of \mathcal{P} let $S(\mathcal{A}) = \{p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}: p_i \in \mathcal{A}, n_i \geq 0\}$ be the set of positive integers with prime factors from \mathcal{A} and for the empty set define $S(\emptyset) = \{1\}$. Let G be a group and $g \in G$. We say that g is \mathcal{A} -torsion if there is $n \in S(\mathcal{A})$ such that ng = 0 and g is \mathcal{A} -divisible if for every $n \in S(\mathcal{A})$ there is $h \in G$ such that nh = g. Tor \mathcal{A} G is the subgroup of

the A-torsion elements of G. G is A-torsion if $G = \text{Tor}_A G$, G is A-torsion free if $\text{Tor}_A G = 0$ and G is A-divisible if every element of G is A-divisible.

Proposition 2.1:

- (i) If G is A-torsion then G is $(P \setminus A)$ -divisible and $(P \setminus A)$ -torsion free.
- (ii) A factor group of an A-divisible group is A-divisible and a factor group of an A-torsion group is A-torsion.
- (iii) The direct sum of A-divisible groups is A-divisible and the direct sum of A-torsion groups is A-torsion.
- Let $f: G \longrightarrow H$ be a homomorphism of groups G and H and let H be \mathcal{B} -torsion. Then $G/\operatorname{Tor}_{\mathcal{B}} G$ is
 - (iv) A-divisible if ker f is A-divisible and $B \subset A$;
 - (v) A-torsion if ker f is A-torsion and $B \cap A = \emptyset$;
- (vi) A-torsion and A-divisible if ker f is A-torsion and A-divisible and $B \cap A = \emptyset$.

Proof: The proof of (i), (ii), (iii) is obvious.

Let $\phi: G \longrightarrow G/\operatorname{Tor}_{\mathcal{B}} G$ be the projection and $\phi(x) = y$. Then there is $n \in S(\mathcal{B})$ such that nf(x) = f(nx) = 0 and hence $nx \in \ker f$.

- (iv) Let $m \in S(A)$. Since $\mathcal{B} \subset A$, $nm \in S(A)$. Then there is $z \in \ker f$ such that nmz = nx. Hence n(mz x) = 0 and therefore $\phi(mz x) = 0$. Thus $m\phi(z) = \phi(x) = y$ and $G/\operatorname{Tor}_{\mathcal{B}} G$ is A-divisible.
- (v) By (i), ker f is $(\mathcal{P} \setminus \mathcal{A})$ -divisible and therefore there is $z \in \ker f$ such that nz = nx. Then n(z x) = 0 and there is $m \in S(\mathcal{A})$ such that mz = 0. Hence $\phi(z) = \phi(x) = y$ and $my = \phi(mz) = 0$ and (v) follows.
- (vi) By (v), $G/\operatorname{Tor}_{\mathcal{B}}G$ is \mathcal{A} -torsion. By (i), ker f is $(\mathcal{P} \setminus \mathcal{A})$ -divisible and, since ker f is \mathcal{A} -divisible, ker f is \mathcal{P} -divisible. Then by (iv), $G/\operatorname{Tor}_{\mathcal{B}}G$ is \mathcal{A} -divisible.

The notation $e - \dim X \leq Y$ is used to indicate the property that every map $f \colon A \longrightarrow Y$ of a closed subset A of X into Y extends over X. It is known that $\dim_G X \leq n$ if and only if $e - \dim X \leq K(G,n)$ where K(G,n) is the Eilenberg-Mac Lane complex of type (G,n). A map between CW-complexes is combinatorial if the preimage of every subcomplex of the range is a subcomplex of the domain.

Let M be a simplicial complex and let $M^{[n]}$ be the n-skeleton of M (=the union of all simplexes of M of dim $\leq n$). By a resolution EW(M,n) of M we mean a CW-complex EW(M,n) and a combinatorial map $\omega : EW(M,n) \longrightarrow M$ such that ω is 1-to-1 over $M^{[n]}$. The resolution is said to be suitable for a map

 $f \colon M^{[n]} \longrightarrow Y$ if the map $f \circ \omega|_{\omega^{-1}(M^{[n]})}$ extends to a map from EW(M,n) to Y. The resolution is said to be suitable for a compactum X if for every simplex Δ of M, $e - \dim X \leq \omega^{-1}(\Delta)$. Note that if $\omega \colon EW(M,n) \longrightarrow M$ is a resolution suitable for X, then for every map $\phi \colon X \longrightarrow M$ there is a map $\psi \colon X \longrightarrow EW(M,n)$ such that for every simplex Δ of M, $(\omega \circ \psi)(\phi^{-1}(\Delta)) \subset \Delta$. We will call ψ a combinatorial lifting of ϕ .

Following [7] we will construct a resolution of an (n+1)-dimensional simplicial complex M which is suitable for X with $\dim_G X \leq n$ and a map $f: M^{[n]} \longrightarrow$ K(G,n). In the sequel we will refer to this resolution as the standard resolution for f. Fix a CW-structure on K(G,n) and assume that f is cellular. We will obtain a CW-complex EW(M,n) from $M^{[n]}$ by attaching the mapping cylinder of $f|_{\partial\Delta}$ to $\partial\Delta$ for every (n+1)-simplex Δ of M. Let $\omega : EW(M,n) \longrightarrow M$ be the projection sending each mapping cylinder to the corresponding (n+1)-simplex Δ such that ω is the identity map on $\partial \Delta$, the K(G,n)-part of the cylinder is sent to the barycenter of Δ and ω is 1-to-1 on the rest of the cylinder. Clearly $f|_{\partial\Delta}$ extends over its mapping cylinder and therefore $f \circ \omega|_{\omega^{-1}(M^{[n]})}$ extends over EW(M,n). For each simplex Δ of M, $\omega^{-1}(\Delta)$ is either contractible or homotopy equivalent to K(G,n). Define a CW-structure on EW(M,n) turning ω into a combinatorial map. Thus we get that the standard resolution is indeed a resolution suitable for both X and f. Note that from the construction of the standard resolution it follows that for every subcomplex T of M, $\omega^{-1}(T)$ is the standard resolution of T for $f|_{T^{[n]}}$ and $\omega^{-1}(T)$ is (n-1)-connected if T is (n-1)-connected.

PROPOSITION 2.2: Let M be an (n+1)-dimensional finite simplicial complex and let $\omega \colon EW(M,n) \longrightarrow M$ be the standard resolution for $f \colon M^{[n]} \longrightarrow K(G,n)$, $n \geq 2$. Then for $\omega_* \colon H_n(EW(M,n)) \longrightarrow H_n(M)$, $\ker \omega_*$ is a factor group of the direct sum $\bigoplus G$ of finitely many G.

Proof: Inside each (n+1)-simplex of M cut a small closed ball around the barycenter and not touching the boundary and split M into two subspaces $M = M_1 \cup M_2$ where M_1 = the closure of the complement to the union of the balls and M_2 =the union of the balls. Then ω is 1-to-1 over M_1 , $H_{n-1}(M_1 \cap M_2) = 0$, $H_n(M_2) = 0$ and the preimage under ω of each ball is homotopy equivalent to K(G,n) and hence $H_n(\omega^{-1}(M_2))$ is the direct sum $\bigoplus G$ of finitely many G. Consider the Mayer-Vietoris sequences for the pairs (M_1, M_2) and $(\omega^{-1}(M_1), \omega^{-1}(M_2))$, in which we identify M_1 and $M_1 \cap M_2$ with $\omega^{-1}M_1$ and $\omega^{-1}(M_1 \cap M_2)$, respectively.

From the Mayer-Vietoris sequences it follows that

$$j_*(H_n(\omega^{-1}(M_1) \oplus H_n(\omega^{-1}(M_2))) = H_n(\omega^{-1}(M_1 \cup M_2))$$

and $j_*(0 \oplus H_n(\omega^{-1}(M_2))) \subset \ker \omega_*$. Let us show that $j_*(0 \oplus H_n(\omega^{-1}(M_2))) \supset \ker \omega_*$. Let $j_*(a \oplus b) \in \ker \omega_*$. Then in the Mayer-Vietoris sequence for the pair $(M_1, M_2), j_*(a \oplus 0) = 0$ and therefore there is $c \in H_n(M_1 \cap M_2)$ such that $i_*(c) = a \oplus 0$. Then in the Mayer-Vietoris sequence for the pair $(\omega^{-1}(M_1), \omega^{-1}(M_2)), i_*(c) = a \oplus d$ and $j_*(a \oplus d) = 0$. Thus $j_*(a \oplus b) = j_*(0 \oplus (b - d))$ and therefore $j_*(0 \oplus H_n(\omega^{-1}(M_2))) = \ker \omega_*$. Recall that $H_n(\omega^{-1}(M_2)) = \bigoplus G$ and the proposition follows.

PROPOSITION 2.3: Let $M = M_1 \cup M_2$ be a CW-complex with subcomplexes M_1 and M_2 such that M_1, M_2 and $M_1 \cap M_2$ are (n-1)-connected, $n \geq 2$. Then M is (n-1)-connected and

- (i) $H_n(M)$ is A-divisible if $H_n(M_1)$ and $H_n(M_2)$ are A-divisible;
- (ii) $H_n(M)$ is A-torsion if $H_n(M_1)$ and $H_n(M_2)$ are A-torsion.

Proof: The connectedness of M follows from van Kampen and Hurewicz's theorems and the Mayer-Vietoris sequence. (i) and (ii) follow from the Mayer-Vietoris sequence and (ii) and (iii) of Proposition 2.1.

Let X be a compactum and let $\sigma(G)$ be the Bockstein basis of a group G. By Bockstein's theory $\dim_G X \leq n$ if and only if $\dim_E X \leq n$ for every $E \in \sigma(G)$. Denote:

```
\mathcal{T}(G) = \{ p \in \mathcal{P} : \mathbb{Z}_p \in \sigma(G) \};
\mathcal{T}_{\infty}(G) = \{ p \in \mathcal{P} : \mathbb{Z}_{p^{\infty}} \in \sigma(G) \};
```

 $\mathcal{D}(G) = \mathcal{P} \text{ if } \mathbb{Q} \in \sigma(G) \text{ and } \mathcal{D}(G) = \mathcal{P} \smallsetminus \{p \in \mathcal{P} : \mathbb{Z}_{(p)} \in \sigma(G)\} \text{ otherwise};$

 $\mathcal{F}(G) = \mathcal{D}(G) \setminus (\mathcal{T}(G) \cup \mathcal{T}_{\infty}(G)).$

Note that $\mathcal{T}(G)$, $\mathcal{T}_{\infty}(G)$ and $\mathcal{F}(G)$ are disjoint and G is $\mathcal{F}(G)$ -torsion free.

PROPOSITION 2.4: Let X be a compactum and let G be an abelian group such that $G/\text{Tor }G \neq 0$ and $\dim_G X \leq n$. Then $\dim_E X \leq n$ if E is $\mathcal{D}(G)$ -divisible and $\mathcal{F}(G)$ -torsion free.

Proof: The proof is based on Bockstein's theorem and inequalities.

If $\mathbb{Z}_p \in \sigma(E)$ then $\operatorname{Tor}_p E$ is not divisible by p and hence E is not divisible by p. Thus $p \in \mathcal{P} \setminus \mathcal{D}(G)$ and therefore $\mathbb{Z}_{(p)} \in \sigma(G)$ and $\dim_{\mathbb{Z}_p} X \leq \dim_{\mathbb{Z}_{(p)}} X \leq n$. If $\mathbb{Z}_{p^{\infty}} \in \sigma(E)$ then p is not in $\mathcal{F}(G)$. Then either $p \in \mathcal{P} \setminus \mathcal{D}(G)$ and $\dim_{\mathbb{Z}_{p^{\infty}}} X \leq \dim_{\mathbb{Z}_{(p)}} X \leq n$ or $p \in \mathcal{D}(G) \setminus \mathcal{F}(G)$ and then either $p \in \mathcal{T}(G)$ and $\dim_{\mathbb{Z}_{p^{\infty}}} X \leq \dim_{\mathbb{Z}_p} X \leq n$ or $p \in \mathcal{T}_{\infty}(G)$ and $\dim_{\mathbb{Z}_{p^{\infty}}} X \leq n$.

If $\mathbb{Z}_{(p)} \in \sigma(E)$ then E/Tor E is not divisible by p and hence E is not divisible by p. Thus $p \in \mathcal{P} \setminus \mathcal{D}(G)$ and therefore $\dim_{\mathbb{Z}_{(p)}} X \leq n$.

If $\mathbb{Q} \in \sigma(E)$ then consider the following cases:

- (i) $\mathcal{D}(G) = \mathcal{P}$. Then since $G/\operatorname{Tor} G \neq 0$, $\mathbb{Q} \in \sigma(G)$ and therefore $\dim_{\mathbb{Q}} X \leq n$ (this is the only place where we use that $G/\operatorname{Tor} G \neq 0$).
 - (ii) There is $p \in \mathcal{P} \setminus \mathcal{D}(G)$. Then $\dim_{\mathbb{Q}} X \leq \dim_{\mathbb{Z}_{(p)}} X \leq n$.

3. Proof of Theorem 1.2

Represent X as the inverse limit $X = \varprojlim (K_i, h_i)$ of simplicial complexes K_i with combinatorial bonding maps $h_{i+1} \colon K_{i+1} \longrightarrow K_i$ onto and the projections $p_i \colon X \longrightarrow K_i$ such that for every simplex Δ of K_i , diam $(p_i^{-1}(\Delta)) \le 1/i$. Following A. Dranishnikov [3] we construct by induction CW-complexes L_i and maps $g_{i+1} \colon L_{i+1} \longrightarrow L_i$, $\alpha_i \colon L_i \longrightarrow K_i$ such that:

- (a) L_i is (n+1)-dimensional and obtained from $K_i^{[n+1]}$ by replacing some (n+1)-simplexes by (n+1)-cells attached to the boundary of the replaced simplexes by a map of degree $\in S(\mathcal{F}(G))$. Then α_i is a projection of L_i taking the new cells to the original ones such that α_i is 1-to-1 over $K_i^{[n]}$. We define a simplicial structure on L_i for which α_i is a combinatorial map and refer to this simplicial structure while constructing resolutions of L_i . Note that for $\mathcal{F}(G) = \emptyset$ we don't replace simplexes of $K_i^{[n+1]}$ at all.
- (b) The maps h_i , g_i and α_i combinatorially commute. By this we mean that for every simplex Δ of K_i , $(\alpha_i \circ g_{i+1})((h_{i+1} \circ \alpha_{i+1})^{-1}(\Delta)) \subset \Delta$.

We will construct L_i in such a way that $Z = \varprojlim (L_i, g_i)$ will be of $\dim_G \leq n$ and Z will admit a G-acyclic map onto X.

Set $L_1 = K_1^{[n+1]}$ with $\alpha_1 \colon L_1 \longrightarrow K_1$ the embedding and assume that the construction is completed for i. Let $E \in \sigma(G)$ and let $f \colon L_i^{[n]} \longrightarrow K(E,n)$ be a cellular map. Let $\omega_L \colon EW(L_i,n) \longrightarrow L_i$ be the standard resolution of L_i for f. We are going to construct from $EW(L_i,n)$ a resolution of K_i suitable for X. On the first step of the construction we will obtain from $EW(L_i,n)$ a resolution $\omega_{n+1} \colon EW(K_i^{[n+1]},n) \longrightarrow K_i^{[n+1]}$ such that $EW(L_i,n)$ is a subcomplex of $EW(K_i^{[n+1]},n)$ and ω_{n+1} extends $\alpha_i \circ \omega_L$. On the second step we will construct resolutions $\omega_j \colon EW(K_i^{[j]},n) \longrightarrow K_i^{[j]}, n+2 \le j \le \dim K_i$ such that $EW(K_i^{[j]},n)$ is a subcomplex of $EW(K_i^{[j+1]},n)$ and ω_{j+1} extends ω_j for $n+1 \le j < \dim K_i$. From the construction below it will follow that for every $n+1 \le j \le \dim K_i$ the n-skeletons of $EW(L_i,n)$ and $EW(K_i^{[j]},n)$ coincide. Noe that $(\alpha_i \circ \omega_L)^{-1}(T)$ is (n-1)-connected if T is an (n-1)-connected subcomplex of K_i . Then $\omega_j^{-1}(T)$

is also (n-1)-connected if T is an (n-1)-connected subcomplex of $K_i^{[j]}$. The construction is carried out as follows.

STEP 1: For every simplex Δ of K_i of dim = n+1 consider separately the subcomplex $(\alpha_i \circ \omega_L)^{-1}(\Delta)$ of $EW(L_i, n)$. Enlarge $(\alpha_i \circ \omega_L)^{-1}(\Delta)$ by attaching cells of dim = n+1 in order to kill $\operatorname{Tor}_{\mathcal{F}(G)} H_n((\alpha_i \circ \omega_L)^{-1}(\Delta))$ and attaching cells of dim > n+1 in order to kill all homotopy groups of the enlarged subcomplex in dim > n. Define $EW(K_i^{[n+1]}, n)$ as $EW(L_i, n)$ with all the cells attached for all (n+1)-dimensional simplexes Δ of K_i and let a map ω_{n+1} : $EW(K_i^{[n+1]}, n) \longrightarrow K_i^{[n+1]}$ extend $\alpha_i \circ \omega_L$ by sending the interior points of the attached cells to the interior of the corresponding Δ .

STEP 2: Assume that a resolution ω_j : $EW(K_i^{[j]}, n) \longrightarrow K_i^{[j]}, n+1 \leq j < \dim K_i$ is constructed. For every simplex Δ of K_i of dim = j+1 consider separately the subcomplex $\omega_j^{-1}(\partial \Delta)$ of $EW(K_i^{[j]}, n)$. Enlarge $\omega_j^{-1}(\partial \Delta)$ by attaching cells of dim = n+1 in order to kill $\text{Tor}_{\mathcal{F}(G)} H_n(\omega_j^{-1}(\partial \Delta))$ and attaching cells of dim > n+1 in order to kill all homotopy groups of the enlarged subcomplex in dim > n. Define $EW(K_i^{[j+1]}, n)$ as $EW(K_i^{[j]}, n)$ with all the cells attached for all (j+1)-simplexes Δ of K_i and let a map ω_{j+1} : $EW(K_i^{[j+1]}, n) \longrightarrow K_i^{[j+1]}$ extend ω_j by sending the interior points of the attached cells to the interior of the corresponding Δ .

Finally, denote $EW(K_i, n) = EW(K_i^{[m]}, n)$ and $\omega = \omega_m$: $EW(K_i, n) \longrightarrow K_i$ where $m = \dim K_i$. Note that from the construction it follows that the *n*-skeleton of $EW(K_i, n)$ is contained in $EW(L_i, n)$.

Let us show that $EW(K_i, n)$ is suitable for X. First note that for every simplex Δ of dim $\geq n + 1$, $\omega^{-1}(\Delta)$ is homotopy equivalent to $K(H_n(\omega^{-1}(\Delta)), n)$.

In order to show that $\dim_{H_n(\omega^{-1}(\Delta))} X \leq n$ we first consider Step 1 of the construction. Let Δ be an (n+1)-dimensional simplex of K_i . By $\omega_L|_{...}$ we will denote the map $\omega_L|_{(\alpha_i\circ\omega_L)^{-1}(\Delta)}\colon (\alpha_i\circ\omega_L)^{-1}(\Delta)\longrightarrow \alpha_i^{-1}(\Delta)$ with the range restricted to $\alpha_i^{-1}(\Delta)$. Let $(\omega_L|_{...})_*\colon H_n((\alpha_i\circ\omega_L)^{-1}(\Delta))\to H_n(\alpha_i^{-1}(\Delta))$ be the induced homomorphism. Note that by (a), $H_n(\alpha_i^{-1}(\Delta))$ is $\mathcal{F}(G)$ -torsion and $H_n(\omega^{-1}(\Delta))=H_n((\alpha_i\circ\omega_L)^{-1}(\Delta))/\operatorname{Tor}_{\mathcal{F}(G)}H_n((\alpha_i\circ\omega_L)^{-1}(\Delta))$. Consider the following cases.

CASE 1-1: $E = \mathbb{Z}_p$. By Proposition 2.2, $\ker(\omega_L|_{...})_*$ is p-torsion. Then since p is not in $\mathcal{F}(G)$, by Proposition 2.1, (v), $H_n(\omega^{-1}(\Delta))$ is p-torsion and by Bockstein's theorem $\dim_{H_n(\omega^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p} X \leq n$.

CASE 1-2: $E = \mathbb{Z}_{p^{\infty}}$. By Proposition 2.2, $\ker(\omega_L|_{\dots})_*$ is p-torsion and p-divisible. Then since p is not in $\mathcal{F}(G)$, by Proposition 2.1, (vi), $H_n(\omega^{-1}(\Delta))$ is p-

torsion and p-divisible and by Bockstein's theorem $\dim_{H_n(\omega^{-1}(\Delta))} X \le \dim_{\mathbb{Z}_{p^{\infty}}} X \le n$.

CASE 1-3: $E = \mathbb{Z}_{(p)}$ or $E = \mathbb{Q}$. By Proposition 2.2, $\ker(\omega_L|_{\dots})_*$ is $\mathcal{D}(G)$ -divisible. Then since $\mathcal{F}(G) \subset \mathcal{D}(G)$, by Proposition 2.1, (iv), $H_n(\omega^{-1}(\Delta))$ is $\mathcal{D}(G)$ -divisible and since $H_n(\omega^{-1}(\Delta))$ is $\mathcal{F}(G)$ -torsion free, by Proposition 2.4, $\dim_{H_n(\omega^{-1}(\Delta))} X \leq n$.

Now let us pass to Step 2 of the construction. We will show that the properties of the homology groups established above will be preserved for simplexes of higher dimensions. Let Δ be a (j+1)-dimensional simplex of K_i , $j \geq n+1$ and recall that $H_n(\omega^{-1}(\Delta)) = H_n(\omega^{-1}(\partial\Delta)) / \operatorname{Tor}_{\mathcal{F}(G)} H_n(\omega^{-1}(\partial\Delta))$. Note that $\omega^{-1}(T)$ is (n-1)-connected if T is an (n-1)-connected subcomplex of K_i . We use this fact when we apply below Proposition 2.3 to show that while assembling $\omega^{-1}(\partial\Delta)$ from $\omega^{-1}(\Delta')$ for j-simplexes Δ' of Δ we preserve the corresponding properties of $\omega^{-1}(\Delta')$. Once again we consider separately the following cases.

CASE 2-1: $E = \mathbb{Z}_p$. If for every j-dimensional simplex Δ' of Δ , $H_n(\omega^{-1}(\Delta'))$ is p-torsion then, by Proposition 2.3, $H_n(\omega^{-1}(\partial \Delta))$ is p-torsion and hence $H_n(\omega^{-1}(\Delta))$ is p-torsion. Therefore $\dim_{H_n(\omega^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_p} X \leq n$.

CASE 2-2: $E = \mathbb{Z}_{p^{\infty}}$. If for every j-dimensional simplex Δ' of Δ , $H_n(\omega^{-1}(\Delta'))$ is p-torsion and p-divisible then, by Proposition 2.3, $H_n(\omega^{-1}(\partial \Delta))$ is p-torsion and p-divisible and hence $H_n(\omega^{-1}(\Delta))$ is p-torsion and p-divisible. Therefore $\dim_{H_n(\omega^{-1}(\Delta))} X \leq \dim_{\mathbb{Z}_{p^{\infty}}} X \leq n$.

CASE 2-3: $E = \mathbb{Z}_{(p)}$ or $E = \mathbb{Q}$. If for every j-dimensional simplex Δ' of Δ , $H_n(\omega^{-1}(\Delta'))$ is $\mathcal{D}(G)$ -divisible then, by Proposition 2.3, $H_n(\omega^{-1}(\partial \Delta))$ is $\mathcal{D}(G)$ -divisible. Then $H_n(\omega^{-1}(\Delta))$ is $\mathcal{D}(G)$ -divisible and $\mathcal{F}(G)$ -torsion free and, by Proposition 2.4, $\dim_{H_n(\omega^{-1}(\Delta))} X \leq n$.

Thus we have shown that $EW(K_i, n)$ is suitable for X. Now replacing K_{i+1} by a K_l with a sufficiently large l we may assume that there is a combinatorial lifting of h_{i+1} to $h'_{i+1} : K_{i+1} \longrightarrow EW(K_i, n)$. Replace h'_{i+1} by its cellular approximation preserving the property of h'_{i+1} of being a combinatorial lifting of h_{i+1} .

Consider the (n+1)-skeleton of K_{i+1} and let Δ_{i+1} be an (n+1)-dimensional simplex in K_{i+1} . Let Δ_i be the smallest simplex in K_i containing $h_{i+1}(\Delta_{i+1})$. Then $h'_{i+1}(\Delta_{i+1}) \subset \omega^{-1}(\Delta_i)$. Let $\tau: (\alpha_i \circ \omega_L)^{-1}(\Delta_i) \longrightarrow \omega^{-1}(\Delta_i)$ be the inclusion. Note that from the construction it follows that for

$$\tau_*: H_n((\alpha_i \circ \omega_L)^{-1}(\Delta_i)) \longrightarrow H_n(\omega^{-1}(\Delta_i)),$$

ker τ_* is $\mathcal{F}(G)$ -torsion. Recall that the n-skeleton of $\omega^{-1}(\Delta_i)$ is contained in $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$ and consider $h'_{i+1}|_{\partial \Delta_{i+1}}$ as a map to $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$. Let a be the generator of $H_n(\partial \Delta_{i+1})$. Since $h'_{i+1}|_{\partial \Delta_{i+1}}$ extends over Δ_{i+1} as a map to $\omega^{-1}(\Delta_i)$ we have that $\tau_*((h'_{i+1}|_{\partial \Delta_{i+1}})_*(a)) = 0$. Hence $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) \in \ker \tau_*$ and therefore there is $k \in S(\mathcal{F}(G))$ such that $k((h'_{i+1}|_{\partial \Delta_{i+1}})_*(a)) = 0$. Replace Δ_{i+1} by a cell C attached to the boundary of Δ_{i+1} by a map of degree k if $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) \neq 0$ and set $C = \Delta_{i+1}$ if $(h'_{i+1}|_{\partial \Delta_{i+1}})_*(a) = 0$. Then $h'_{i+1}|_{\partial \Delta_{i+1}}$ can be extended over C as a map to $(\alpha_i \circ \omega_L)^{-1}(\Delta_i)$ and we will denote this extension by $g'_{i+1}|_{C}$: $C \longrightarrow (\alpha_i \circ \omega_L)^{-1}(\Delta_i)$. Thus replacing if needed (n+1)-simplexes of $K_{i+1}^{[n+1]}$ we construct from $K_{i+1}^{[n+1]}$ a CW-complex L_{i+1} and a map g'_{i+1} : $L_{i+1} \longrightarrow EW(L_i, n)$ which extends h'_{i+1} restricted to the n-skeleton of K_{i+1} . Now define $g_{i+1} = \omega_L \circ g'_{i+1}$: $L_{i+1} \longrightarrow L_i$ and finally define a simplicial structure on L_{i+1} for which α_{i+1} is a combinatorial map. It is easy to check that the properties (a) and (b) are satisfied. Since the triangulation of L_{i+1} can be replaced by any of its barycentric subdivisions we may also assume that

(c) diam $g_{i+1}^j(\Delta) \leq 1/i$ for every simplex Δ in L_{i+1} and $j \leq i$ where $g_i^j = g_{j+1} \circ g_{j+2} \circ \cdots \circ g_i$: $L_i \longrightarrow L_j$.

Denote $Z = \varprojlim (L_i, g_i)$ and let $r_i: Z \longrightarrow L_i$ be the projections. For constructing L_{i+1} we used an arbitrary map $f: L_i^{[n]} \longrightarrow K(E, n), E \in \sigma(G)$. Let us show that choosing $E \in \sigma(G)$ and f in an appropriate way for each i we can achieve that $\dim_E Z \leq n$ for every $E \in \sigma(G)$ and hence $\dim_G Z \leq n$.

Let $\psi \colon F \longrightarrow K(E,n)$ be a map of a closed subset F of L_j . Then by (c) for a sufficiently large i>j the map $\psi \circ g_i^j|_{(g_i^j)^{-1}(F)}$ extends over a subcomplex N of L_i to a map $\phi \colon N \longrightarrow K(E,n)$. Extending ϕ over $L_i^{[n]}$ we may assume that $L_i^{[n]} \subset N$ and replacing ϕ by its cellular approximation we assume that ϕ is cellular. Now define the map $f \colon L_i^{[n]} \longrightarrow K(E,n)$ that we use for constructing L_{i+1} as $f = \phi|_{L_i^{[n]}}$. Since g_{i+1} factors through $EW(L_i,n)$, the map $f \circ g_{i+1}|_{g_{i+1}^{-1}(L_i^{[n]})} \colon g_{i+1}^{-1}(L_i^{[n]}) \longrightarrow K(E,n)$ extends to a map $f' \colon L_{i+1} \longrightarrow K(E,n)$. Define $\psi' \colon L_{i+1} \longrightarrow K(E,n)$ by $\psi'(x) = (\phi \circ g_{i+1})(x)$ if $x \in g_{i+1}^{-1}(N)$ and $\psi'(x) = f'(x)$ otherwise. Then $\psi'|_{(g_{i+1}^j)^{-1}(F)} \colon (g_{i+1}^j)^{-1}(F) \longrightarrow K(E,n)$ is homotopic to $\psi \circ g_{i+1}^j|_{(g_{i+1}^j)^{-1}(F)} \colon (g_{i+1}^j)^{-1}(F) \longrightarrow K(E,n)$ and hence $\psi \circ g_{i+1}^j|_{(g_{i+1}^j)^{-1}(F)}$ extends over L_{i+1} . Now since we need to solve only countably many extension problems for every L_j with respect to K(E,n) for every $E \in \sigma(G)$ we can choose for each i a map $f \colon L_i^{[n]} \longrightarrow K(E,n)$ in the way described above to achieve that $\dim_E Z \leq n$ for every $E \in \sigma(G)$ and hence $\dim_G Z \leq n$.

The property (b) implies that for every $x \in X$ and $z \in Z$,

(d1)
$$g_{i+1}(\alpha_{i+1}^{-1}(st(p_{i+1}(x)))) \subset \alpha_i^{-1}(st(p_i(x)))$$
 and

(d2)
$$h_{i+1}(st((\alpha_{i+1} \circ r_{i+1})(z))) \subset st((\alpha_i \circ r_i)(z))$$

where st(a) =the union of all the simplexes containing a.

Define a map $r: Z \longrightarrow X$ by $r(z) = \bigcap \{p_i^{-1}(st((\alpha_i \circ r_i)(z))) : i = 1, 2, \ldots\}$. Then (d1) and (d2) imply that r is indeed well-defined and continuous.

The properties (d1) and (d2) also imply that for every $x \in X$

$$r^{-1}(x) = \varprojlim (\alpha_i^{-1}(st(p_i(x))), g_i|_{\alpha_i^{-1}(st(p_i(x)))}),$$

where the map $g_i|_{\alpha_i^{-1}(st(p_i(x)))}$ is considered as a map to $\alpha_{i-1}^{-1}(st(p_{i-1}(x)))$.

Since $r^{-1}(x)$ is not empty for every $x \in X$, r is a map onto and let us show that $r^{-1}(x)$ is G-acyclic.

Since $st(p_i(x))$ is contractible, $T = \alpha_i^{-1}(st(p_i(x)))$ is (n-1)-connected. From (a) and Proposition 2.3 it follows that $H_n(T)$ is $\mathcal{F}(G)$ -torsion. Then, since G is $\mathcal{F}(G)$ -torsion free, by the universal-coefficient theorem

$$H^n(T;G) = \operatorname{Hom}(H_n(T),G) = 0.$$

Thus $\tilde{H}^k(r^{-1}(x);G) = 0$ for $k \leq n$ and, since $\dim_G Z \leq n$, $\tilde{H}^k(r^{-1}(x);G) = 0$ for $k \geq n+1$. Hence r is G-acyclic and this completes the proof.

References

- A. N. Dranishnikov, On homological dimension modulo p, (Russian) Matematicheskii Sbornik (N.S.) 132(174) (1987), no. 3, 420–433, 446; translation in Mathematics of the USSR-Sbornik 60 (1988), no. 2, 413–425.
- [2] A. N. Dranishnikov, Rational homology manifolds and rational resolutions, Special issue in memory of B. J. Ball, Topology and its Applications 94 (1999), 75–86.
- [3] A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, http://at.yorku.ca/topology/taic.htm.
- [4] R. D. Edwards, A theorem and a question related to cohomological dimension and cell-like maps, Notices of the American Mathematical Society 25 (1978), A-259.
- [5] A. Koyama and K. Yokoi, A unified approach of characterizations and resolutions for cohomological dimension modulo p, Tsukuba Journal of Mathematics 18 (1994), 247–282.
- [6] A. Koyama and K. Yokoi, Cohomological dimension and acyclic resolutions, Special issue in memory of T. Benny Rushing, Topology and its Applications 120 (2002), 175–204.

- [7] M. Levin, Constructing compacta of different extensional dimensions, Canadian Mathematical Bulletin 44 (2001), 80-86.
- [8] L. Rubin and P. Schapiro, $\mathbb{Z}_{p^{\infty}}$ -acyclic resolutions for metrizable compacta, preprint.
- [9] J. Walsh, Dimension, cohomological dimension, and cell-like mappings, in Shape Theory and Geometric Topology (Dubrovnik, 1981), Lecture Notes in Mathematics 870, Springer, Berlin-New York, 1981, pp. 105-118.